Multi-Sorted Residuation
نویسنده
چکیده
Nonassociative Lambek Calculus (NL) is a pure logic of residuation, involving one binary operation (product) and its two residual operations defined on a poset [26]. Generalized Lambek Calculus GL involves a finite number of basic operations (with an arbitrary number of arguments) and their residual operations [7]. In this paper we study a further generalization of GL which admits operations whose arguments and values can be of different sorts. This logic is called Multi-Sorted Lambek Calculus mL. We also consider its variants with lattice and boolean operations. We discuss some basic properties of these logics (completeness, decidability, complexity and others) and the corresponding algebras.
منابع مشابه
Multi-paradigm Logic Programming a Simple Operational Model for Concurrent Functional Logic Programming
In this paper we specify an operational semantics which combines the most important operational principles of functional logic languages, namely residuation and narrowing. Narrowing combines eecient evaluation principles of functional languages with the problem-solving capabilities of logic programming. Residuation restricts this combination but adds the possibility of concurrent computations. ...
متن کاملCategorical Abstract Logic : Hidden Multi - Sorted Logics as Multi - Term Π - Institutions
Babenyshev and Martins proved that two hidden multi-sorted deductive systems are deductively equivalent if and only if there exists an isomorphism between their corresponding lattices of theories that commutes with substitutions. We show that the π-institutions corresponding to the hidden multi-sorted deductive systems studied by Babenyshev and Martins satisfy the multi-term condition of Gil-Fé...
متن کاملCRL-Chu Correspondences
We continue our study of the general notion of L-Chu correspondence by introducing the category CRL-ChuCors incorporating residuation to the underlying complete lattice L, specifically, on the basis of a residuation-preserving isotone Galois connection λ. Then, the L-bonds are generalized within this same framework, and its structure is related to that of the extent of a suitably defined λ-dire...
متن کاملResiduation and Guarded Rules for Constraint Logic Programming
A major difficulty with logic programming is combinatorial explosion: since goals are solved with possibly indeterminate (i.e., branching) reductions, the resulting search trees may grow wildly. Constraint logic programming systems try to avoid combinatorial explosion by building in strong determinate (i.e., non-branching) reduction in the form of constraint simplification. In this paper, we pr...
متن کاملFree Lukasiewicz and Hoop Residuation Algebras
Hoop residuation algebras are the {→, 1}-subreducts of hoops; they include Hilbert algebras and the {→, 1}-reducts of MV-algebras (also known as Wajsberg algebras). The paper investigates the structure and cardinality of finitely generated algebras in varieties of kpotent hoop residuation algebras. The assumption of k-potency guarantees local finiteness of the varieties considered. It is shown ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014